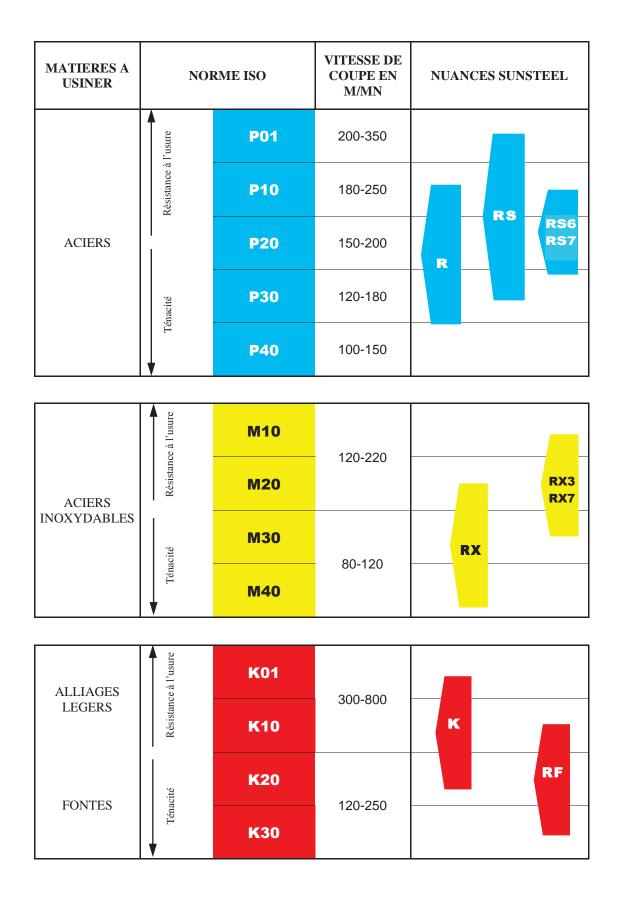


SOMMAIRE 022011

1	GÉNÉRALITÉ
_	GEI (EIGHELLE

	1.1	Index alphabétique	Page: 4
	1.2	Nuances de base	Page: 5
2	PLAQU	ETTES DE TOURNAGE	Page: 7
	2.0	Correspondance vitesse et dureté	Page: 8
	2.1	Codification ISO des plaquettes	Page: 9
	2.2	Conditions de coupe	Pages: 10 et 11
	2.3	Correspondances des matières	Pages: 12 et 13
	2.4	Application technique	Pages : 14 et 15
	2.5	Plaquettes négatives à trou	Pages: 16 à 20
	2.6	Plaquettes positives à trou	Pages: 21 à 25
	2.7	Plaquettes positives sans trou	Pages: 26 et 27
	2.8	Plaquettes négatives sans trou	Page : 28
	2.9	Plaquettes de tronçonnage	Page : 29
	2.10	Plaquettes multi fonctions	Page : 30
	2.10	Traquettes mata fonetions	1450.00
3	PLAQU	ETTES DE FRAISAGE	Page : 31
	3.1	Correspondance vitesse et dureté	Page: 32
	3.2	Codification ISO des plaquettes	Page: 33
	3.3	Conditions de coupe	Pages: 34 et 35
	3.5	Plaquettes à trou	Pages: 36 à 40 + 44
	3.6	Plaquettes sans trou	Pages: 41 à 43



INDEX ALPHABETIQUE

Codes	Pages	Codes	Pages	Codes	Pages	Codes	Pages
ADKT	36	SCMT	23	WCMT	25		
ADLT	36	SDHT	40	WCMX	25		
ADLW	36	SDMT	40	WNMG	20		
ADMW	36	SECR	41	WPR	39		
APFT	37	SECN	41				
APKT	37	SECX	41				
APKX	37	SEHT	40				
APMT	37	SEHW	40				
BDGT	38	SEKN	41				
BDMT	38	SEKR	41				
CCGT	21	SNHX	44				
CCGX	44	SNMA	18				
CCMT	21	SNMG	18				
CNMA	16	SNMM	18				
CNMG	16	SNUN	42				
CNMM	16	SPKN	42				
DCGT	21	SPKR	42				
DCMT	21	SPMR	26				
DNMA	17	SPMT	40				
DNMG	17	SPUN	26 - 42				
DNMM	17	TCGT	23				
ECMT	22	TCMT	23				
EPMT	22	TNMA	19				
KNUX	28	TNMG	19				
LDHT	44	TNMM	19				
OFKT	39	TNUN	43				
RCGT	22	TPKN	43				
RCMT	22 - 39	TPKR	43				
RNMG	17	TPMR	27				
RPMT	39	TPUN	27 - 43				
RPMW	39	TPUX	27				
SCGT	23	TUW	29				
MFMN	30	VBMT	24				
MGMN	30	VCGT	24				
MGMR	30	VCMT	24				
MGML	30	VNMG	20				
MRMN	30	WCGT	25				

NUANCES DE BASE

NO	OTES
_	

PLAQUETTES DE TOURNAGE

Index de recherche

p.16	CN	
p.17	DN	
p.17	RN	
p.18	SN	
p.19	TN	
p.20	VN	
p.20	WN	

p.21	CC	
p.21	DC	
p.22	EC EP	
p.22	RC	
p.23	SC	
p.23	TC	
p.24	VB VC	
p.25	WC	

p.26	SP	
p.27	TP	

p.28	KNUX	
p.29	TUW	
p.30	MF MG MR	0

CORRESPONDANCE VITESSE DE COUPE (m/mm) ET VITESSE DE ROTATION (tr/mn)

DIAMETRE	10	20	30	40	50	60	70	80	90	100	110	120	130
Vitesse de						Vitesse	de rotation	(tr/mn)					
coupe (m/mn)		Vitesse de rotation (tr/mn)											
10	318	159	106	80	64	53	45	40	35	32	29	27	24
15	478	239	159	119	96	80	68	60	53	48	43	40	37
20	637	318	212	159	127	106	91	80	71	64	58	53	49
25	796	398	265	199	159	133	114	100	88	80	72	66	61
30	955	478	318	239	191	159	136	119	106	96	87	80	73
40	1 274	637	425	318	255	212	182	159	142	127	116	106	98
50	1 592	796	531	398	318	265	227	199	177	159	145	133	122
60	1 911	955	637	478	382	318	273	239	212	191	174	159	147
70	2 229	1 115	743	557	446	372	318	279	248	223	203	186	171
80	2 548	1 274	849	637	510	425	364	318	283	255	232	212	196
90	2 866	1 433	955	717	573	478	409	358	318	287	261	239	220
100	3 185	1 592	1 062	796	637	531	455	398	354	318	290	265	245
110	3 503	1 752	1 168	876	701	584	500	438	389	350	318	292	269
120	3 822	1 911	1 274	955	764	637	546	478	425	382	347	318	294
130	4 140	2 070	1 380	1 035	828	690	591	518	460	414	376	345	318
140	4 459	2 229	1 486	1 115	892	743	637	557	495	446	405	372	343
150	4 777	2 389	1 592	1 194	955	796	682	597	531	478	434	398	367
160	5 096	2 548	1 699	1 274	1 019	849	728	637	566	510	463	425	392
170	5 414	2 707	1 805	1 354	1 083	902	773	677	602	541	492	451	416
180	5 732	2 866	1 911	1 433	1 146	955	819	717	637	573	521	478	441
190	6 051	3 025	2 017	1 513	1 210	1 008	864	756	672	605	550	504	465
200	6 369	3 185	2 123	1 592	1 274	1 062	910	796	708	637	579	531	490
220	7 006	3 503	2 335	1 752	1 401	1 168	1 001	876	778	701	637	584	539
240	7 643	3 822	2 548	1 911	1 529	1 274	1 092	955	849	764	695	637	588
260	8 280	4 140	2 760	2 070	1 656	1 380	1 183	1 035	920	828	753	690	637
280	8 917	4 459	2 972	2 229	1 783	1 486	1 274	1 115	991	892	811	743	686
300	9 554	4 777	3 185	2 389	1 911	1 592	1 365	1 194	1 062	955	869	796	735
320	10 191	5 096	3 397	2 548	2 038	1 699	1 456	1 274	1 132	1 019	926	849	784
340	10 828	5 414	3 609	2 707	2 166	1 805	1 547	1 354	1 203	1 083	984	902	833
360	11 465	5 732	3 822	2 866	2 293	1 911	1 638	1 433	1 274	1 146	1 042	955	882
380	12 102	6 051	4 034	3 025	2 420	2 017	1 729	1 513	1 345	1 210	1 100	1 008	931
400	12 739	6 369	4 256	3 185	2 548	2 123	1 820	1 592	1 415	1 274	1 158	1 062	980
500	15 924	7 962	5 308	3 981	3 185	2 654	2 275	1 990	1 769	1 592	1 448	1 327	1 225
600	19 108	9 554	6 369	4 777	3 822	3 185	2 730	2 389	2 123	1 911	1 737	1 592	1 470
700	22 293	11 146	7 431	5 573	4 459	3 715	3 185	2 787	2 477	2 229	2 027	1 858	1 715
800	25 478	12 739	8 493	6 369	5 096	4 246	3 640	3 185	2 831	2 548	2 316	2 123	1 960
900	28 662	14 331	9 554	7 166	5 732	4 777	4 095	3 583	3 185	2 866	2 606	2 389	2 205
1 000	31 847	15 924	10 616	7 962	6 369	5 308	4 550	3 981	3 539	3 185	2 895	2 654	2 450

CORRESPONDANCE DES SYSTEMES DE MESURE DE LA DURETE

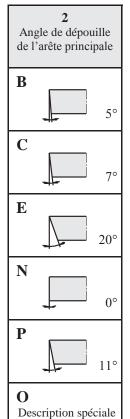
Résistance Vickers Brinell Rockwell SHORE

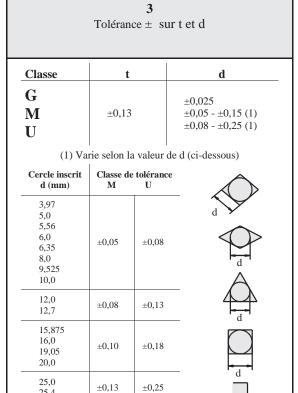
L'industrie utilise différents systèmes pour mesurer la dureté. Le tableau ci-dessous vous donne la correspondance entre quatre systèmes parmi les plus fréquents.

Résistance à la traction	Vickers	Brinell	Rockwell	SHORE
N/nm²	HV	НВ	HRC	C
700	20			28
740	21	10		29
770	22	20		30
810	23	80	19,2	31
840	24	40	21,2	33
880	25	50	23,0	34
910	26	50	24,7	35
950	27	70	26,1	36
980	28	80	27,6	37
1020	29	90	29,0	39
1050	30	00	30,3	40
1090	31	10	31,5	41
1120	32	20	32,9	42
1150	33	80	33,8	43
1190	34	10	34,9	44
1230	35	50	36,0	45
1260	360	359	37,0	46
1300	370	368	38,0	47
1330	380	373	38,9	48
1370	390	385	39,8	49
1400	400 393		40,7	50
1440	410 400		41,5	51
1470	420	407	42,3	52
1510	430	416	43,2	53
1540	440	423	44.0	54

à la traction				
N/nm²	HV	НВ	HRC	C
1580	450	429	44,8	55
1610	460	435	45,5	56
1650	470	441	46,3	57
1680	480	450	47,0	58
1720	490	457	47,7	59
1750	500	465	48,3	60
1790	510	474	49,0	61
1820	520	482	49,6	62
1860	530	489	50,3	63
1890	540	496	50,9	64
1930	550	503	51,5	65
1960	560	511	52,1	66
2000	570	520	52,7	67
2030	580	527	53,3	68
2070	590	533	53,8	69
2100	600	533	54,4	70
2140	610	543	54,9	71
2170	620	549	55,4	72
2210	630	555	55,9	73
2240	640	561	56,4	74
2280	650	568	56,9	75
2310	660	574	57,4	75
2350	670	581	57,9	76
2380	680	588	58,7	77
2410	690	595	58,9	78

	sistance Vickers		Rockwell	SHORE
à la traction N/nm²	HV	НВ	HRC	С
N/nm ⁻	700	602	59,3	79
	710	602	59,8	80
	720	616	60,2	81
	730	622	60,2	82
	740	627	61,1	83
	750	633	61,5	83
	760	639	61,9	84
	770	644	,	84 85
	1 1 1		62,3	
	780	650	62,7	86
	790	656	63,1	86
	800	661	63,5	87
	810	666	63,9	87
	820	670	64,3	88
	830	677	64,6	89
	840	682	65,0	89
	850		65,3	90
	860		65,7	90
	870		66,0	91
	880		66,3	91
	890		66,6	92
	900		66,9	92
	910		67,2	
	920		67,5	
	930		67,7	
	940		68,0	


TOURNAGE: CODIFICATION ISO DES PLAQUETTES


Extrait ISO 1832-1985

Forme de plaquette et angle dégagement					
C	\bigcirc	80°			
D	\Diamond	55°			
K		55°			
R					
S					
Т					
V		35°			
W	$\overline{\Omega}$	80°			

Ту	4 /pe de plaquette
A	
G	KIIX
M	
N	
R	
Т	
W	
X Des	scription spéciale

Taille de la plaquette = Longueur d'arête en mm								
d (mm)	C	D	R	S	T	V	w \triangle	
2.05					0.5			
3,97			05		06			
5,0 5,56			03		09			
6,0			06		09			
6,35	06	07	00		11	11		
8,0	00	07	08		11	11		
9,525	09	11	09	09	16	16		
10,0	0)		10	0)	10	10		
12,0			12					
12,7	12	15	12	12	22		08	
15,875	16		15	15	27			
16,0			16					
19,05	19		19	19	33			
20,0			20					
25,0			25					
25,4	25		25	25				
32,0			32					

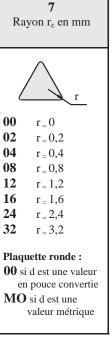
théorique de l'arête de coupe est indiquée

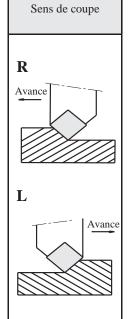
25,4

31,75

32.0

1		t
01	t = 1,	59
T1	t=1,9	98
02	t = 2,3	38
03	t = 3	18
T3	t = 3,9	97
04	t=4,	76
05	t = 5,	56
06	t = 6,	35
07	t = 7,9	94
09	t = 9,	52


 ± 0.15


6

Epaisseur de

plaquette t en mm

±0,25

8

TOURNAGE: CONDITIONS DE COUPE

	MATIERES A USINER			DURETE	Avance (mm/ tr)		
NUANCE	(Classificant	ion of a	access 12 at 12)	BRINELL HB	0,1	0,2	0,4
	(Classificat	ion ci. j	pages 12 et 13)	нь	Vitesse	e/coupe (1	m/min)
		01	C = 0,1 - 0,25 %	125	395	255	185
	Aciers non alliés	02	C = 0,25 - 0,55 %	150	365	235	170
		03	C = 0,55 - 0,80 %	170	320	205	150
		04	Non trempés	180	285	175	130
	Aciers faiblement alliés	05	Aciers à roulements	-	230	160	120
R	(éléments d'alliage ≤5 %)	06	Trempés et revenus	275	170	110	80
		07	Trempés et revenus	350	140	90	65
	Aciers fortement alliés	08	Recuits	200	385	195	100
RS	(éléments d'alliage > 5%)	10	Aciers à outils au carbone	325	190	90	45
		11	Non alliés	180	285	170	95
	Aciers coulés	12	Faiblement alliés (éléments d'alliage ≤ 5 %)	200	250	135	65
		13	Fortement alliés (éléments d'alliage > 5 %)	225	195	120	65
		14	Aciers au manganèse, Mn 12-14%	250	95	40	25

	MATIER	RES A	USINER	DURETE	Ava 0,1	nce (mm 0,2	/ tr) 0,4	
NUANCE	(Classificatio	on cf. p	pages 12 et 13)	BRINELL HB		Vitesse/coupe (m/min)		
		01	Aciers de décolletage	200	290	200	120	
	Aciers inoxydables	02	Non trempés	200	225	160	90	
	barres/forgés ferritique/martensitique	03	Trempés par précipitation	330	85	65	45	
		04	Trempés	330	100	70	50	
		05	Aciers de décolletage	200	240	180	120	
	Aciers inoxydables	06	Austénitique	180	195	145	85	
	barres/forgés austénitique	07	Trempés par précipitation	330	95	65	45	
RX		08	Super austénitique	200	130	90	60	
	Aciers inoxydables barres-forgés austénitique/ferritique (duplex)	09	Non soudable $C \ge 0.05 \%$	230	180	135	80	
RX3		10	Soudable C <0,05 %	260	130	110	70	
		11	Non trempés	200	195	145	85	
	Aciers inoxydables coulés ferritique/martensitique	12	Trempés par précipitation	330	75	50	35	
	7	13	Trempés	330	85	60	40	
	Aciers inoxydables	14	Austénitique	180	155	120	75	
	coulés	15	Trempés par précipitation	330	75	50	35	
	austénitique	16	Super austénitique	200	115	80	55	
	Aciers inoxydables coulés	17	Non soudable C ≥0,05 %	230	165	110	70	
	austénitique/ferritique (duplex)	18	Soudable C <0,05 %	260	115	95	65	

Les valeurs moyennes sont données à titre indicatif pour l'usinage avec arrosage et n'engagent nullement la responsabilité de notre société

TOURNAGE: CONDITIONS DE COUPE

NUANCE	MATIERES A USINER (Classification cf. pages 12 et 13)			DURETE BRINELL HB	Avance (mm/ t 0,1 0,2 Vitesse/coupe (m/		0,3
	Super alliages réfractaires	19	Recuits ou mis en solution	200	75	65	60
	Base fer	20	Vieillis ou mis en solution et vieillis	280	55	50	45
	Super alliages réfractaires Base nickel	21	Recuits ou mis en solution	250	45	40	35
RX		22	Vieillis ou mis en solution et vieillis	350	35	30	25
KA		23	Coulés ou coulés et vieillis	320	25	20	15
	Super alliages réfractaires Base cobalt	24	Recuits ou mis en solution	200	45	40	35
		25	Mis en solution et vieillis	300	35	30	25
		26	Coulés ou coulés et vieillis	320	25	20	15

NUANCE	MATIERES A USINER (Classification cf. pages 12 et 13)			Rm* MPa	Avance (mm/ tr) 0,1 0,3 0, Vitesse/coupe (m/m		0,5
RX	Alliages de titane**	27 28	Ti pur (99,5 % Ti) Alliages α, quasi α, α+β, recuits	400 950	160 65	135	105
	29 Alliages $\alpha+\beta$ vieillis, alliages β recuits ou vieillis		1050	65	50	35	
* Rm = résistance maximum à la traction mesurée en MPa.							

	MATIEF	RES A	USINER	DURETE		nce (mm	
NUANCE				BRINELL	0,1	0,3	0,6
	(Classificatio	on cf. p	ages 12 et 13)	HB	Vitesse	/coupe (1	m/min)
	Fonte malléable	01	Ferritique (copeaux courts)	130	245	170	135
	Fonte malleable	02	Perlitique (copeaux longs)	230	125	105	75
	Fonte grise	03	Faible résistance à la traction	180	235	180	120
	rome grise	04	Forte résistance à la traction	260	200	145	100
RF		05	Ferritique	160	230	175	120
	Fonte nodulaire GS	06	Perlitique	250	200	150	105
		07	Martensitique	380	160	120	80
	Aciers durs et extras durs	08	Trempés et revenus	45 <i>HRC</i>	120	100	70
		09	Trempés et revenus	60 <i>HRC</i>	-	-	-
	Fonte en coquille	10	Coulée, ou coulée et vieillie	400	35	20	-
		11	Forgés ou forgés et travaillés à froid, non vieillissants	60	1520	570	350
		12	Forgés ou forgés et vieillis	100	1525	570	350
	Alliages d'aluminium	13	Coulés et non vieillis	75	1525	570	350
	7 mages a arammam	14	Coulés, ou coulés et vieillis	90	1525	570	350
K		15	Coulés 13-15%-Si	130	405	265	215
		16	Coulés 18-28%-Si	130	255	185	160
		17	Alliages de décolletage, Pb > 1%	110	1120	350	195
	Cuivre et alliages de cuivre	18	Laiton et bronze au plomb, Pb ≤ 1%	90	1120	350	195
		19	Bronze + cuivre sans plomb et cuivre électrolytique	100	530	200	120

CT	Cermet, matériau de coupe avec d'excellentes propriétés de dureté permettant une grande acuité d'arête ; recommandé pour des applications exigeants des états de surface très fins - vitesses de coupe conseillées 150 à 250 M/min.
CBN	Insert nitrure de bore brasé sur support carbure. Les plaquettes CBN peuvent accroître la productivité dans des opérations de tournage difficiles, en finition. Recommandées pour les fontes et matières réfractaires, pour les pièces trempées en coupes continues ou coupes avec légers chocs.
PCD	Insert diamant brasé sur support carbure pour un usinage en finition et semi-finition des métaux non ferreux et des matières non métalliques. Une durée de vie exceptionnelle, excellent état de surface.

Les valeurs moyennes sont données à titre indicatif pour l'usinage avec arrosage et n'engagent nullement la responsabilité de notre société

CORRESPONDANCES DES MATIERES

	AFNOR	Appellations commerciales
Aciers nor	n alliés	
01 E24.2	2Ne - E24.U - CC12 - CC20 - S250 - S250Pb - 10PbF2 - S300 - S300Pb - XC12 - NFA35 - 501E36	
02 CC35	5 - CC45 - 35MF4 - 35M5 - 40M5 - 20M5 - XC38TS - XC42 - XC48TS	
03 CC55	5 - XC55 - XC60 -	
Aciers fail	blement alliés	
	3 - E36-3 - 20MC5 - 5587 - 608C7 - 100C6 - 15D3 - 16N6 - 20NCD2 - 18NCD6 - 12C3 - 55C3 - 04 - 15CD3.5 - 15CD4.5 - 12CD9.10 - 30CD12 - 55NCV6	OVAKO 520M - FORMAX - IMACROT NIT -
05		
	C6 - 14NC11 - 12NC15 - 55S7 - 40NCD3 - 35NCD6 - 32C4 - 42C4 - 16MC5 - 25CD4 - 35CD4 - 04TS - 42CD4 - 30CD12 - 50CV4 - 40CAD6.12 - Y100C6 - 105WC13 - 55NCDV7	INEXA 482 (XM) - HARDOX 100 - WELDOX 700
Aciers for	tement alliés	
08 Z18N	V5 - Z200C12 - Z40CDV5 - Z100CDV5 - Z30WCV9 - Z45CS9 - Z40CSD10	
09 Z85W	VDCV 6-5-2-5	
10		
Aciers cou	ulés	
11		
12		
13		
14 Z1201	M12 - 2120M12 -	

Acier	s inoxydables Ferritiques / martensitiques	USA (AISI)
01		
02	Z10CF17 - Z8CD17.01 - Z4CND13.4M - Z10CA13 - Z10CAS18 - Z80CNS20.02 - Z10CAS24 -	403 - 416 - 430 - 410 405 - 420 - 431 -430F - 434 - CA6.NM - 405 - 430 - HNV6 - 446 - EV8 - S44400
03 12	Z7CNU17-04	630
04		
Acier	s inoxydables - Austénitiques	
05		
13		
44	Z2CN18.10 - Z6CN18.09 - Z10CNF18.09 - Z3CN19.10 - Z2CrN118.10 - Z12CN17.07 - Z2CN18.10 - Z6CND17.11 - Z2CND17.13 - Z6CND18.12.03 - Z2CND19.15 - Z2CNDU25.20 - Z6CND18.10 - Z6C	304L - 304 - 303 304L - 301 - 304LN - 316 - 316L - 316LN - 316L - 316 - 317L - UNS - V0890A - 321 - 347 - 316Ti - 318 - 309 - 310S - 308
07 15	Z8CNA17.07	17-7PH
08 16	Z1NCDU31.27.03 - Z1CNDU20.18.06AZ	NO8028 - S31254
Acier	s inoxydables Austénitiques / férritiques	
09 17		S31500 - S32900
10 18	Z2CN23-04AZ - Z2CND22-05-03	S32304 - S31803

CORRESPONDANCES DES MATIERES

	AFNOR	Appellations commerciales
Зире	r alliages réfractaires	•
19	Z12NCS35.16	INCOLOY 800
20		
21	NC22FeD - NC22FeDNB - NC20T	HAYNES 600 - NIMOCAST PD16 - NIMONIC PE 13 - RENE 95 - HASTEL- LOY C INCOLOY 825 - INCONEL 600 MONEL 400 -
22	ZSNCDT42 - NC12AD - NC19eNB - NC20TA - NC19KDT - NC20K14 -	INCONEL 700 et 718 - Mar,M 432 - NIMONIC 901 - WASPALOY
23		JESSOP G 64
24	KC20WN - KC22WN	AIR RESIST 213 - JETALLOY 209
25		
26		
111	*	
	ges de titane	
27		
28		
29	T-A5E - T-A6V -	
oni	res	
01	MN32.8 - MN35.10 -	
02	Mn 450 - MP50.5 - MP60.3 - Mn650.3	

Fonte	PS .	
01	MN32.8 - MN35.10 -	
02	Mn 450 - MP50.5 - MP60.3 - Mn650.3	
	Ft10D - Ft15D - Ft20D	
04	Ft25D - Ft30D - Ft35D - Ft40D	
	FCS 400.12 - FGS 370.17 - FGS 500.7 - S.NC202 -	
06	FGS 600.3 - FGS 700.2	
07		
80		
09		
10		
Alliag	ges d'aluminium	
11		
12		
	A.S7G - A.SU12	
14		
15		
16		
17		
18		
19		

APPLICATION TECHNIQUE

➤ TOURNAGE : PLAQUETTES NEGATIVES (CNM., DNM., ...)

NUANCE	FINITION $(R = 0.4)$	SEMI-FINITION (R=0,8)
RS	$a_p = 0.3 \ a.2.5 mm$ $f = 0.05 a.0.35 mm/tr$	$a_p = 1 \ a \ 5 \ mm$ $f = 0.1 \ a \ 0.5 \ mm/tr$
ACIERS	a _p A	1,0-15 ap A
	 Brise-copeaux positif diminuant la puissance absorbée. Excellent contrôle du copeau quelque soit la profondeur de passe. Robustesse du tranchant, réduction de l'échauffement de l'arête de coupe. 	- Bonne fragmentation des copeaux en semi-finition et semi- ébauche - Excellente tenue de coupe sur machines CN - Bonne résistance aux chocs lors d'usinages discontinus.
RX	$a_p = 0.8 \text{ à } 3.5 \text{ mm}$ f = 0.1 à 0.4 mm/tr	$\begin{array}{l} a_p=1~\grave{a}~4~mm\\ f~=0,1~\grave{a}~0,4~mm/tr \end{array}$
RX3 ACIERS INOX	25-30 a _p	25-30 ap
	 - Arête de coupe curviligne permettant d'obtenir un brise-copeaux positif très dégagé. - Bon contrôle du copeau. - Réduit considérablement la puissance absorbée. - Très bonne tenue dans les aciers inoxydables. - Bonne tenue également dans les aciers doux. 	 Bonne pénétration quelque soit la profondeur de passe. Nouveau profil de brise-copeaux réduisant l'échauffement de l'arête de coupe et améliorant la tenue de coupe notamment sur machines CN. Très bonne tenue dans les aciers inoxydables. Bonne tenue également dans les aciers doux.
RF	$\begin{array}{l} a_p = 1 \text{ à 5 mm} \\ f = 0.1 \text{ à 0.5 mm/tr} \end{array}$	$a_p = 3 \text{ à } 8 \text{ mm}$ f = 0.3 à 0.8 mm/tr
FONTES	10-15 a _p	25-30 a _p
	 Bonne fragmentation des copeaux en finition. Choix universel pour les opérations de tournage en général sur fonte. Bonne tenue dans les fontes grises et nodulaires. 	 Recommandée pour des avances et profondeurs de passe importantes et pour coupes discontinues grâce à une bonne protection d'arête – très efficace sur fonte de moulage.
K ALUMINIUM	25-39	$a_p = 0.8 \text{ à } 3.5 \text{ mm}$ f = 0.1 à 0.4 mm/tr
	8-10	a _p
	 - Brise-copeaux positif très dégagé, avec une "cuillère" importante. - Très bonne tenue de coupe dans les différents alliages d'aluminiu - Réduit considérablement la puissance absorbée. 	
СТ		$a_p = 0.3 \text{ à } 2.5 \text{ mm}$ f = 0.08 à 0.4 mm/tr
CERMET	7.6	a _p ♠ f
	 Très bon état de surface sur des pièces en aciers. Robustesse de l'arête, bonne tenue de coupe pour l'usinage de pré Très bon contrôle du copeau, réduction de l'échauffement de l'arê Machine stable et CN recommandée. 	

APPLICATION TECHNIQUE

> TOURNAGE: PLAQUETTES NEGATIVES (CNM., DNM., ...) suite

NUANCE	EBAUCHE (R≥1,2)	EBAUCHE LOURDE
RS ACIERS	$a_{p} = 3 \text{ à } 8 \text{ mm}$ $f = 0,3 \text{ à } 0,8 \text{ mm/tr}$ f	$a_p = 3 \text{ à } 11 \text{ mm}$ $f = 0,3 \text{ à } 1,1 \text{ mm/tr}$
	 Recommandée pour les fortes avances et profondeurs de passe importantes. Bonne résistance aux chocs lors d'usinages discontinus. Choix universel. 	 Géométrie non réversible avec une face d'appui plane, permettant d'augmenter la stabilité, indispensable en usinages lourds. Recommandée pour très fortes ébauches Très bon contrôle de la fragmentation du copeau Haute productivité sur gros tours parallèles et tours verticaux.

➤ TOURNAGE : PLAQUETTES POSITIVES (CC.., DC.., ...)

- Machine stable et CN recommandée.

NUANCE	FINITION ($R = 0.2 / 0.4$)	SEMI-FINITION / EBAUCHE (R > 0,4)
RS ACIERS	10-15 a _p	$a_p = 0.5 \text{ à } 3.5 \text{ mm}$ $f = 0.05 \text{ à } 0.4 \text{ mm/tr}$
RX		1 - 0,05 a 0,4 mm/u
RX3 ACIERS INOX	 Géométrie de coupe permettant de s'adapter à de nombreuses matiè Faible puissance absorbée et très bon contrôle du copeau aux diffe Très bonne qualité de finition – travail en extérieur et en intérieur Bons résultats en semi-finition dans les aciers inoxydables. 	érentes avances et profondeurs de coupe.
RX ACIERS INOX	a _p	$a_p = 0.1 \ \text{à 5 mm}$ $f = 0.03 \ \text{à 0.5 mm/tr}$ f
	 Brise-copeaux très positif pour l'usinage des aciers inoxydables à faible dureté, des aciers doux et matières non-ferreux. Bon état de surface Réduction de l'échauffement et de la puissance absorbée. 	 Bon contrôle du copeau aux différentes vitesses d'avance et profondeurs de coupe Domaine d'application très vaste.
K ALUMINIUM	- Brise-copeaux poli, géométrie de coupe très positive, pour l'usinage des métaux et alliages non-ferreux. Très bonne tenue de	a _p = 0,1 à 5 mm f = 0,03 à 0,5 mm/tr - Ébauche moyenne et semi-finition en usinage continu.
	coupe sans déformation de la pièce usinée car la puissance absorbée est très faible. - Performance et productivité exceptionnelles.	 - Usinage aluminium, cuivre, plastique, PVC, - Bon contrôle du copeau.
CT CERMET	10-15 ap /	$a_p = 0.5 \text{ à } 3.5 \text{ mm}$ $f = 0.05 \text{ à } 0.4 \text{ mm/tr}$
	- Excellente qualité de finition – bonne résistance à l'usinage – trav	rail à sec ou avec lubrification.

PLAQUETTES NEGATIVES A TROU TYPE C (80°)

CNIMA	CNMA				NU	ANC	ES				D	Porte			
CIVIMA		R	RS	RX	RX3	RF	K	CT	CBN	PCD	l	d	t	r	Outils
	120404 120408 120412					••			•	•	12,9	12,7	4,76	0,4 0,8 1,2	MCLN PCBN PCFN PCKN
80° t	190608 190612					0					19,3	19,05	6,35	0,8 1,2	PCLN PCSN

CNMC					NU	JANC	ES				D	Porte			
CNMG		R	RS	RX	RX3	RF	K	CT	CBN	PCD	1	d	t	r	Outils
	090304 090308		•								9,7	9,53	3,18	0,4 0,8	
	120404 120408 120412	•	•	•	•	•	•	•			12,9	12,7	4,76	0,4 0,8 1,2	MCLN PCBN
80°	160608 160612 160616		• 0								16,1	15,88	6,35	0,8 1,2 1,6	PCFN PCKN PCLN PCSN
	190608 190612 190616		••								19,3	19,05	6,35	0,8 1,2 1,6	

CNMM					NU	JANC	D	Porte							
CIVIVIIVI		R	RS	RX	RX3	RF	K	CT	CBN	PCD	1	d	t	r	Outils
	120408		•								12,9	12,7	4,76	0,8	
200080 F	120412		•								12,7	12,7	7,70	1,2	MCLN PCBN
	160612		0								16,1	15,88	6,35	1,2	PCBN PCFN
CORDOR	160616		0								10,1	13,00	0,33	1,6	PCKN PCLN
80° / - 1 t -	190612		0								19,3	19,05	6,35	1,2	PCSN
	190616		0								19,3	19,03	0,33	1,6	

PLAQUETTES NEGATIVES A TROU TYPE D (55°)

DAMA				NU	ANC	D	Porte							
DNMA	R	RS	RX	RX3	RF	K	CT	CBN	PCD	l	d	t	r	Outils
150408 150608					0			•	•	15,5	12,7	4,76 6,35	0,8	PDJN PDNN PDUN

DAMC	<i>DNMG</i>				NU	JANC	D	Porte							
DNMG		R	RS	RX	RX3	RF	K	CT	CBN	PCD	l	d	t	r	Outils
	110404 110408		•								11,6	9,53	4,76	0,4 0,8	
	150408		•								15,5	12,7	4,76	0,8	PDJN PDNN
55.	150604 150608 150612	•	•	•	•	0	•				15,5	12,7	6,35	0,4 0,8 1,2	PDUN

DAMM				NU	JANC		D	Porte						
DNMM		RS	RX	RX3	RF	K	CT	CBN	PCD	l	d	t	r	Outils
150608 55° 150612										15,7	12,7	6,35	0,8	PDJN PDNN PDUN

PLAQUETTES NEGATIVES A TROU TYPE R (RONDE)

DNMC	RNMG					NUA	NCES	DIMENSIONS				Porte			
KNMG			R	RS	RX	RF	K	CT	CBN	PCD		d	t		Outils
		120400		0								12,7	4,76		DDCNI
	1 1	150600	•	0								15,88	6,35		PRSN
M— (1 —≥4	- > t < -	190600		0								19,05	6,35		

 \bullet = Disponible / \bullet = Disponible usine / \bigcirc = Sur demande

PLAQUETTES NEGATIVES A TROU TYPE S (90°)

CNIMA				NU	JANC	ES				D	IMEN	SIONS	5	Porte
SNMA	R	RS	RX	RX3	RF	K	CT	CBN	PCD	l	d	t	r	Outils
120408					0					12,7	12.7	4,76	0,8	PSBN PSDN PSKN
120412					0					12,7	12,7	4,70	1,2	PSSN PSSN MSSN

CNIMC					NU	JANC	EES				D	IMEN	SIONS	5	Porte
SNMG		R	RS	RX	RX3	RF	K	СТ	CBN	PCD	l	d	t	r	Outils
	090304 090308	•	O								9,53	9,53	3,97	0,4 0,8	
r	120404 120408 120412	•	•	•	•	0	•	0			12,7	12,7	4,76	0,4 0,8 1,2	PSBN PSDN PSKN
	150608 t 150612										15,88	15,88	6,35	0,8 1,2	PSSN MSSN
	190612 190616		•								19,05	19,05	6,35	1,2 1,6	

CNIMM					NU	JANC	ES				D	IMEN	SIONS	S	Porte
SNMM		R	RS	RX	RX3	RF	K	СТ	CBN	PCD	l	d	t	r	Outils
(2000g r	120408 120412		0								12,7	12,7	4,76	0,8 1,2	PSBN
	150612		0								15,88	15,88	6,35	1,2	PSDN PSKN PSSN
t t	190612 190616		O								19,05	19,05	6,35	1,2 1,6	MSSN

PLAQUETTES NEGATIVES A TROU TYPE T (60°)

TNMA					NU	JANC	ES				D	IMEN	SIONS	5	Porte
		R	RS	RX	RX3	RF	K	СТ	CBN	PCD	l	d	t	r	Outils
16	50404 50408 50412					•			•	•	16,5	9,53	4,76	0,4 0,8 1,2	MTUN MTFN MTEN MTJN PTDN PTFN PTGN PTTN

TNMG					NU	JANC	ES				D	IMEN	SIONS	S	Porte
INMG		R	RS	RX	RX3	RF	K	СТ	CBN	PCD	l	d	t	r	Outils
500	110308		0								11,0	6,35	3,18	0,8	MTUN
60°	160404 160408 160412	•	•	•	•	•	•	•			16,5	9,53	4,76	0,4 0,8 1,2	MTFN MTEN MTJN PTDN PTFN
r - -	220404 220408 220412	•	•								22	12,7	4,76	0,4 0,8 1,2	PTGN PTTN

TNMM					NU	JANC	ES				D	IMEN	SIONS	}	Porte
		R	RS	RX	RX3	RF	K	CT	CBN	PCD	l	d	t	r	Outils
,60°	160408 160412		0								16,5	9,53	4,76	0,8 1,2	MTUN MTFN MTEN
	220408 220412 220416		0								22	12,7	4,76	0,8 1,2 1,6	MTJN PTDN PTFN PTGN PTTN

PLAQUETTES NEGATIVES A TROU TYPE V (35°)

WAIMC				NUA	NCES				D	IMEN	SIONS		Porte
VNMG	R	RS	RX	RF	K	CT	CBN	PCD	l	d	t	r	Outils
160404 35- 160408		•							16,6	9,53	4,76	0,4	MVSN MVQN MVVN

PLAQUETTES NEGATIVES A TROU TYPE W (80°)

WAIMC					NU	JANC	ES				D	IMEN	SIONS		Porte
WNMG		R	RS	RX	RX3	RF	K	СТ	CBN	PCD	l	d	t	r	Outils
	060404 060408		•	•	•						6,50	9,53	4,76	0,4 0,8	MWI N
80°	080404 080408 080412	•	•	•	•	0	•	0			8,7	12,7	4,76	0,4 0,8 1,2	MWLN PWLN

PLAQUETTES POSITIVES A TROU TYPE C (80°)

CCCT						NU	ANC	ES					DIME	NSIO	NS		Porte
CCGT			R	RS	RX	RX3	RF	K	CT	CBN	PCD	l	d	t	r	d1	Outils
		060202 060204			•			•				6,5	6,35	2,38	0,2 0,4	2,8	
r	dl	09T302 09T304 09T308			•			•				9,7	9,53	3,97	0,2 0,4 0,8	4,4	SCAC SCLC
80°	70 t	120402 120404 120408			•			•				12,9	12,7	4,76	0,2 0,4 0,8	5,5	

CCMT					NU	ANC	EES					DIME	NSIO	NS		Porte
CCMT		R	RS	RX	RX3	RF	K	CT	CBN	PCD	l	d	t	r	d1	Outils
	060202 060204	•	•	•	•			•	•		6,5	6,35	2,38	0,2 0,4	2,8	
r di A	080304 080308	•	•								8,1	7,94	3,18	0,4 0,8	3,4	SCAC
800 70	09T304 09T308	•	•	•	•	•		•	••	•	9,7	9,53	3,97	0,4 0,8	4,4	SCLC
	120404 120408		•	•	•						12,9	12,7	4,76	0,4 0,8	5,5	

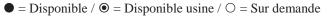
PLAQUETTES POSITIVES A TROU TYPE D (55°)

DCGT				NU	ANC	CES					DIME	NSIO	NS		Porte
DCGI	R	RS	RX	RX3	RF	K	CT	CBN	PCD	l	d	t	r	d1	Outils
070202 070204			•			•				7,8	6,35	2,38	0,2 0,4	2,8	SDNC
55° 11T302 11T304 7° - t - 11T308			•			•				11,6	9,53	3,97	0,2 0,4 0,8	4,4	SDQC SDVC

DCMT					NU	ANC	CES					DIME	NSIO	NS		Porte
DCMT		R	RS	RX	RX3	RF	K	CT	CBN	PCD	l	d	t	r	d1	Outils
di	070202 070204	•	•								7,8	6,35	2,38	0,2 0,4	2,8	
55*	11T302 11T304 11T308	•	•	•	•	•		•	••	•	11,6	9,53	3,97	0,2 0,4 0,8	4,4	SDNC SDQC SDVC
	150408	•									15,5	12,7	4,76	0,8	5,5	

 \bullet = Disponible / \bullet = Disponible usine / \bigcirc = Sur demande

PLAQUETTES POSITIVES A TROU TYPE E (75°)


ECMT					NUA	NCES					DIME	NSIO	NS		Porte
ECMT		R	RS	RX	RF	K	CT	CBN	PCD	l	d	t	r	d1	Outils
<i></i> r	080304	•								8,2	7,93	3,18	0,4	3,2	
	120408	•								12,4	12	4	0,8	5,4	SELC
75°	12M404 12M408		•							12,4	12	4	0,4 0,8	5,4	

EDMT				NUA	NCES					DIME	NSIO	NS		Porte
EPMT	R	RS	RX	RF	K	CT	CBN	PCD	l	d	t	r	d1	Outils
080304 08M304	•	•							8,2 8,2	7,93	3,18	0,4	3,2 4,2	SELP

PLAQUETTES POSITIVES A TROU TYPE R (RONDE)

DCCT	,					NUA	NCES	}			DIME	NSIO	NS		Porte
RCGT			R	RS	RX	RF	K	CT	CBN	PCD	d	t		d1	Outils
ATT)	dl 🖂	0602MO					•				6	2,38		2,2	
		0803MO					•				8	3,18		3,35	PRDC PRSC
d	7° t	1003MO					•				10	3,18		4,0	SRDC
		1204MO					•				12	4,76		4,4	

DCMT	7					NUA	NCES				DIME	NSIO	NS		Porte
RCMT			R	RS	RX	RF	K	CT	CBN	PCD	d	t		d1	Outils
		0602MO	•								6	2,38		2,7	
	dl	0803MO	•								8	3,18		3,4	
		1003MO		•							10	3,18	:	3,6	PRDC PRSC
d	7° t	10T3MO									10	3,97		4,3	SRDC
		1204MO		•							12	4,76		4,2	

PLAQUETTES POSITIVES A TROU TYPE S (90°)

SCGT					NUA	NCES					DIME	NSIO	NS		Porte
SCGI		R	RS	RX	RF	K	CT	CBN	PCD	1	d	t	r	d1	Outils
	09T304 09T308			•		•				9,53	9,53	3,97	0,4 0,8	4,4	SSBC SSPC
70 t	120404 120408					•				12,7	12,7	4,76	0,4 0,8	5,5	SSSC SSKC

CCMT					NUA	NCES					DIME	NSIO	NS		Porte
SCMT		R	RS	RX	RF	K	CT	CBN	PCD	l	d	t	r	d1	Outils
r dl	060204		0							6,25	6,25	2,38	0,4	2,8	aan a
	09T304 09T308		•		0					9,53	9,53	3,97	0,4 0,8	4,4	SSBC SSPC SSSC SSKC
7 7 t	120404 120408		•		0					12,7	12,7	4,76	0,4 0,8	5,5	SSKC

PLAQUETTES POSITIVES A TROU TYPE T (60°)

TCCT					NU	ANC	EES					DIME	NSIO	NS		Porte
TCGT		R	RS	RX	RX3	RF	K	CT	CBN	PCD	l	d	t	r	d1	Outils
60° 7°	110202 110204						•				11,0	6,35	2,38	0,2 0,4	2,8	STAC STDC STFC
	16T302 16T304 16T308			•			•				16,5	9,53	3,97	0,2 0,4 0,8	4,4	STGC STJC STTC STUC

TOMT					NU	ANC	ES					DIME	NSIO	NS		Porte
TCMT		R	RS	RX	RX3	RF	K	CT	CBN	PCD	1	d	t	r	d1	Outils
60° 7°	090204 090208		•								9,6	5,56	2,38	0,4 0,8	2,5	STAC
	110202 110204 110208		•	•				0			11,0	6,35	2,38	0,2 0,4 0,8	2,8	STDC STFC STGC STJC STTC
r — I — I th	- 16T304 16T308		•	•	•	00		0			16,5	9,53	3,97	0,4 0,8	4,4	STUC

PLAQUETTES POSITIVES A TROU TYPE V (35°)

VDMT				NU	ANC	EES					DIME	NSIO	NS		Porte
VBMT	R	RS	RX	RX3	RF	K	CT	CBN	PCD	l	d	t	r	d1	Outils
160404		•		•						16,6	9,53	4,76	0,4	4,4	SVVB

VCCT					NU	ANC	ES					DIME	NSIO	NS		Porte
VCGT		R	RS	RX	RX3	RF	K	CT	CBN	PCD	l	d	t	r	d1	Outils
dı	110302 110304			•			•				11,0	6,35	3,18	0,2 0,4	2,8	SVJC SVLC
35°	160402 160404 160408			•			•				16,5	9,53	4,76	0,2 0,4 0,8	4,4	SVVC SVXC SVZC

VCMT					NU	ANC	EES					DIME	NSIO	NS		Porte
VCMI		R	RS	RX	RX3	RF	K	CT	CBN	PCD	l	d	t	r	d1	Outils
_r	110304		•								11	6,35	3,18	0,4	3,4	SVJC
	130304	•									13	8,00	3,18	0,4	2,8	SVLC SVVC
35° 7° + t	160404 160408		•		•						16,6	9,53	4,76	0,4 0,8	4,4	SVXC SVZC

PLAQUETTES POSITIVES A TROU TYPE W (80°)

WCCT				NUA	NCES					DIME	NSIO	NS		Porte
WCGT	R	RS	RX	RF	K	CT	CBN	PCD	1	d	t	r	d1	Outils
020102					•				3,6	3,97	1,59	0,2	2,2	SWUC

W.C.L.			1	NUA	NCES		1			DIME	NSIO	NS		Porte
WCMT	R	RS	RX	RF	K	СТ	CBN	PCD	1	d	t	r	d1	Outils
020102	•					•			3,6	3,97	1,59	0,2	2,2	SWUC

****				NUA	NCES					DIME	NSIO	NS		Porte
WCMX	R	RS	RX	RF	K	CT	CBN	PCD	1	d	t	r	d1	Outils
030208 040208 050308 06T308 080408		•							3,80 4,30 5,40 6,50 8,70	5,56 6,35 7,94 9,53 12,7	2,38 2,38 3,18 3,97 4,76	0,8 0,8 0,8 0,8	2,8 3,0 3,4 4,0 4,3	Forets 40_ 41_ 42_ 47_

PLAQUETTES POSITIVES SANS TROU TYPE S (90°)

CDMD					NUA	NCES				D	IMEN	SIONS	5	Porte
SPMR		R	RS	RX	RF	K	CT	CBN	PCD	l	d	t	r	Outils
r	090304		•							9,53	9,53	3,18	0,4	CSBP CSDP CSKP
	120304 t 120308		•							12,7	12,7	3,18	0,4 0,8	CSSP CSTP

CDIA				NUA	NCES				D	IMEN	SIONS	5	Porte
SPUN	R	RS	RX	RF	K	CT	CBN	PCD	l	d	t	r	Outils
120304 120308	•	•							12,7	12,7	3,18	0,4	CSBP CSDP CSKP CSSP CSTP

PLAQUETTES POSITIVES SANS TROU TYPE T

TDMD					NUA	NCES				D	IMEN	SIONS	5	Porte
TPMR		R	RS	RX	RF	K	CT	CBN	PCD	l	d	t	r	Outils
√ 60°∕∕	090204	•								9,62	5,55	2,38	0,4	CTDD
	110304 110308		•	0	0		•			11,0	6,35	3,18	0,4 0,8	CTBP CTCP CTDP CTFP CTGP
r-/	160304 160308	• •	•	0	0		•			16,5	9,53	3,18	0,4 0,8	CTTP CTUP

TDIIN					NUA	NCES				D	IMEN	SIONS	5	Porte
TPUN		R	RS	RX	RF	K	CT	CBN	PCD	l	d	t	r	Outils
, 60°	110304 110308	•								11,0	6,35	3,18	0,4 0,8	CTBP CTCP
d	160304 160308		•							16,5	9,53	3,18	0,4 0,8	CTDP CTFP CTGP
	220408		•							22	12,7	4,76	0,8	CTTP CTUP

TDIIV				NUA	NCES				D	IMEN	SIONS	8	Porte
TPUX	R	RS	RX	RF	K	CT	CBN	PCD	l	d	t	r	Outils
160304 L 160304 R					•				16,5	9,53	3,18	0,4	CTBP CTCP CTDP CTFP CTGP CTTP CTUP

PLAQUETTES NEGATIVES SANS TROU TYPE K (55°)

VAILIV]	NUA	NCES	5				Dl	MEN	SION	S		Porte
KNUX	R	RS	RX	RF	K	CT	CBN	PCD	1	d	t	e	r	b	Outils
160405 L2 160410 L2	•	•	•						16,0	9,53	4,76	16,15	0,5	2,2	
160405 R2 160410 R2	•	•	•						16,0	9,53	4,76	16,15	0,5	2,2	CKJN
160410 L1									16,0	9,53	4,76	16,15	1,0	3,2	CKNN CKUN
160410 R1									16,0	9,53	4,76	16,15	1,0	3,2	

VNIIV				NUA	NCES	8				D]	IMEN	SION	S		Porte
KNUX	R	RS	RX	RF	K	CT	CBN	PCD	l	d	t	e	r	b	Outils
160405 LX					•										CKJN
55° 160405 RX					•				16,0	9,53	4,76	16,15	0,5	3,2	CKNN CKUN

PLAQUETTES DE TRONCONNAGE

TIM					NUA	NCES				DII	MENSIC	ONS	Porte
TUW		R	RS	RX	RF	K	CT	CBN	PCD	W	l	r	Outils
	02		•			•				2,1	9,3	0,15	
	03	•	•			•				3,1	11,3	0,18	
7,	04	•	•			•				4,1	11,3	0,23	
1 r-/Lw-	05	•	•			•				5,1	11,4	0,28	
	06		•							6,4	11,4	0,35	XCLF XLCF XLGF
7, 8,	03R		•							3,1	11,3	0,15	XLCT
1 r Lw J	04R		•							4,1	11,3	0,18	
70 80	03L 04L		•							3,1 4,1	11,3 11,3	0,15 0,18	
) (Lw1 , r													

PLAQUETTES CARBURE MULTI-FONCTION

MCMN III C			NU	JANC	ES		D	IMEN	SION	S (mn)		Porte-
MGMN multi-fonction		RS	RS6	RX	RX3	K	b	r	1	d	t	outils
	02	•					2	0,2	16	1,2	3,5	KMGEH
	03	•					3	0,4	21	2,35	4,8	KMGIV
7°	04	•					4	0,4	21	3,3	4,8	KMGEH KMGFH KMGIV

MCMD			NU	JANC	ES		D	IMEN	SIONS	S (mn)		Porte-
MGMR à droite pour tronçoi	nnage	RS	RS6	RX	RX3	K	b	r	1	d	t	outils
0 b b a a a a a a a a a a a a a a a a a	03	•					3	0,2	21	2,35	4,8	VO COTA
7	04	•					4	0,3	21	3,3	4,8	KMGEH

MCMI \ 1			NU	JANC	ES		DIMENSIONS (mn)				Porte-	
MGML à gauche pour trong	çonnage	RS	RS6	RX	RX3	K	b	r	1	d	t	t outils
a d b	03	•					3	0,2	21	2,35	4,8	
	04	0					4	0,3	21	3,3	4,8	KMGEH

MDMN	4 *		NU	JANC	ES		D	IMEN	SIONS	S (mn)		Porte-
MRMN gorge multi-fonce	tion	RS	RS6	RX	RX3	K	b	r	l	d	t	outils
d b	02	•					2	1	16	1,5	3,5	
	03	•					3	1,5	21	2,35	4,8	KMGEH KMGIV
7°	04	•					4	2	21	3,3	4,8	

MEMN	NUANCES DIMENSIONS (ONS (mn) Porte-	Porte-					
MFMN usinage frontal	RS	RS6	RX	RX3	K	b	r	1	d	t	outils
03	•					3	0,2	18	2	3	KMGFH

PLAQUETTES DE FRAISAGE

Index de recherche

p.36	AD	
p.37	AP	
p.38	BD	
p.44	CC	
p.39	OF	0
p.39	RC RP	
p.40	SD	

p.40.	SE	6
p.41	SE	
p.44	SN	0
p.40	SP	
p.42	SP	
p.43	TP	
p.39	WP	

CORRESPONDANCE VITESSE DE COUPE (m/mm) ET VITESSE DE ROTATION (tr/mn)

DIAMETRE	10	20	30	40	50	60	70	80	90	100	110	120	130
Vitesse de coupe (m/mn)						Vitesse	de rotation	(tr/mn)					
10	318	159	106	80	64	53	45	40	35	32	29	27	24
15	478	239	159	119	96	80	68	60	53	48	43	40	37
20	637	318	212	159	127	106	91	80	71	64	58	53	49
25	796	398	265	199	159	133	114	100	88	80	72	66	61
30	955	478	318	239	191	159	136	119	106	96	87	80	73
40	1 274	637	425	318	255	212	182	159	142	127	116	106	98
50	1 592	796	531	398	318	265	227	199	177	159	145	133	122
60	1 911	955	637	478	382	318	273	239	212	191	174	159	147
70	2 229	1 115	743	557	446	372	318	279	248	223	203	186	171
80	2 548	1 274	849	637	510	425	364	318	283	255	232	212	196
90	2 866	1 433	955	717	573	478	409	358	318	287	261	239	220
100	3 185	1 592	1 062	796	637	531	455	398	354	318	290	265	245
110	3 503	1 752	1 168	876	701	584	500	438	389	350	318	292	269
120	3 822	1 911	1 274	955	764	637	546	478	425	382	347	318	294
130	4 140	2 070	1 380	1 035	828	690	591	518	460	414	376	345	318
140	4 459	2 229	1 486	1 115	892	743	637	557	495	446	405	372	343
150	4 777	2 389	1 592	1 194	955	796	682	597	531	478	434	398	367
160	5 096	2 548	1 699	1 274	1 019	849	728	637	566	510	463	425	392
170	5 414	2 707	1 805	1 354	1 083	902	773	677	602	541	492	451	416
180	5 732	2 866	1 911	1 433	1 146	955	819	717	637	573	521	478	441
190	6 051	3 025	2 017	1 513	1 210	1 008	864	756	672	605	550	504	465
200	6 369	3 185	2 123	1 592	1 274	1 062	910	796	708	637	579	531	490
220	7 006	3 503	2 335	1 752	1 401	1 168	1 001	876	778	701	637	584	539
240	7 643	3 822	2 548	1 911	1 529	1 274	1 092	955	849	764	695	637	588
260	8 280	4 140	2 760	2 070	1 656	1 380	1 183	1 035	920	828	753	690	637
280	8 917	4 459	2 972	2 229	1 783	1 486	1 274	1 115	991	892	811	743	686
300	9 554	4 777	3 185	2 389	1 911	1 592	1 365	1 194	1 062	955	869	796	735
320	10 191	5 096	3 397	2 548	2 038	1 699	1 456	1 274	1 132	1 019	926	849	784
340	10 828	5 414	3 609	2 707	2 166	1 805	1 547	1 354	1 203	1 083	984	902	833
360	11 465	5 732	3 822	2 866	2 293	1 911	1 638	1 433	1 274	1 146	1 042	955	882
380	12 102	6 051	4 034	3 025	2 420	2 017	1 729	1 513	1 345	1 210	1 100	1 008	931
400	12 739	6 369	4 256	3 185	2 548	2 123	1 820	1 592	1 415	1 274	1 158	1 062	980
500	15 924	7 962	5 308	3 981	3 185	2 654	2 275	1 990	1 769	1 592	1 448	1 327	1 225
600	19 108	9 554	6 369	4 777	3 822	3 185	2 730	2 389	2 123	1 911	1 737	1 592	1 470
700	22 293	11 146	7 431	5 573	4 459	3 715	3 185	2 787	2 477	2 229	2 027	1 858	1 715
800	25 478	12 739	8 493	6 369	5 096	4 246	3 640	3 185	2 831	2 548	2 316	2 123	1 960
900	28 662	14 331	9 554	7 166	5 732	4 777	4 095	3 583	3 185	2 866	2 606	2 389	2 205
1 000	31 847	15 924	10 616	7 962	6 369	5 308	4 550	3 981	3 539	3 185	2 895	2 654	2 450

CORRESPONDANCE DES SYSTEMES DE MESURE DE LA DURETE

Résistance Vickers Brinell Rockwell SHORE

L'industrie utilise différents systèmes pour mesurer la dureté. Le tableau ci-dessous vous donne la correspondance entre quatre systèmes parmi les plus fréquents.

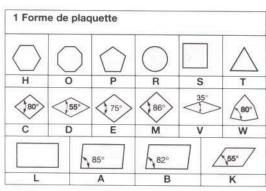
Résistance à la traction	Vickers	Brinell	Rockwell	SHORE
N/nm²	HV	НВ	HRC	С
700	20	00		28
740	21	10		29
770	22	20		30
810	23	30	19,2	31
840	24	40	21,2	33
880	25	50	23,0	34
910	26	50	24,7	35
950	27	70	26,1	36
980	28	30	27,6	37
1020	29	90	29,0	39
1050	30	00	30,3	40
1090	31	10	31,5	41
1120	32	20	32,9	42
1150	33	30	33,8	43
1190	34	40	34,9	44
1230	35	50	36,0	45
1260	360	359	37,0	46
1300	370	368	38,0	47
1330	380	373	38,9	48
1370	390	385	39,8	49
1400	400	393	40,7	50
1440	410	400	41,5	51
1470	420	407	42,3	52
1510	430	416	43,2	53
1540	440	423	44.0	54

à la traction				
N/nm²	HV	НВ	HRC	С
1580	450	429	44,8	55
1610	460	435	45,5	56
1650	470	441	46,3	57
1680	480	450	47,0	58
1720	490	457	47,7	59
1750	500	465	48,3	60
1790	510	474	49,0	61
1820	520	482	49,6	62
1860	530	489	50,3	63
1890	540	496	50,9	64
1930	550	503	51,5	65
1960	560	511	52,1	66
2000	570	520	52,7	67
2030	580	527	53,3	68
2070	590	533	53,8	69
2100	600	533	54,4	70
2140	610	543	54,9	71
2170	620	549	55,4	72
2210	630	555	55,9	73
2240	640	561	56,4	74
2280	650	568	56,9	75
2310	660	574	57,4	75
2350	670	581	57,9	76
2380	680	588	58,7	77
2410	690	595	58,9	78

Résistance	Vickers	Brinell	Rockwell	SHORE
à la traction				
N/nm²	HV	НВ	HRC	C
	700	602	59,3	79
	710	609	59,8	80
	720	616	60,2	81
	730	622	60,7	82
	740	627	61,1	83
	750	633	61,5	83
	760	639	61,9	84
	770	644	62,3	85
	780	650	62,7	86
	790	656	63,1	86
	800	661	63,5	87
	810	666	63,9	87
	820	670	64,3	88
	830	677	64,6	89
	840	682	65,0	89
	850		65,3	90
	860		65,7	90
	870		66,0	91
	880		66,3	91
	890		66,6	92
	900		66,9	92
	910		67,2	
	920		67,5	
	930		67,7	
	940		68,0	

FRAISAGE: CODIFICATION ISO DES PLAQUETTES

Extrait ISO 1832-1991



2 Angle coupe	de dépouill principale	e de l'arête	de
3°	5°	7°	15°
Α	В	С	D
20°	25°	30°	0°
E	F	G	N
11"	requérant	lépouille diffe ptions spécia	
Р		0	-0.00

N	R
	Ш
F	Α
M	KIIX
M	G
W	Т
	1
Q	U

3 Tolérances

Cercle

inscrit

6,35 9,525 (10)

12,7 (12) 15,875 (16)

19,05 (20)

Lettre	Tolérano	es, mm		
symbole	m	t	d	
A1)	±0,005	±0,025	±0,025	
F1)	±0,005	±0,025	±0,013	
C1)	±0,013	±0,025	±0,025	
Н	±0,013	±0,025	±0,013	
E	±0,025	±0,025	±0,025	
G	±0,025	±0,13	±0,025	
J 1)	±0,005	±0,025	±0,052 ±0,132	
K1)	±0,013	±0,025	±0,052 ±0,132	
L1)	±0,025	±0,025	±0,052 ±0,132	
М	±0,08 ²⁾ ±0,18 ²⁾	±0,13	±0,052 ±0,132	
N	±0,082) ±0,182)	±0,025	±0,05 ² ±0,13 ²	
U	±0,132) ±0,382)	±0,13	±0,082 ±0,252	

Formes de plaquettes H, O, P, S, T, C, E, M, W, R

±0.13

±0,13 ±0,20

±0,27 ±0,27

±0,38

Classe

Tolérance sur d

Classe

U

±0.08

±0,08 ±0,13

±0,18

+0.18

Classe

M, J, K, L

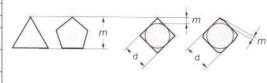
±0,05

±0,05 ±0,08

±0,10 ±0,10

Tolérance sur m

Classe

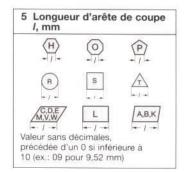

±0.08

±0,15 ±0,15

±0,18

M0 - Plaquettes rondes

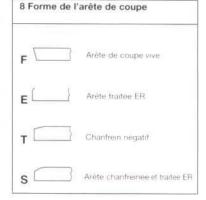
- d: diamètre théorique du cercle inscrit
- épaisseur de plaquette
- m: voir fig.



- 1) Ces classes de tolérance s'appliquent normalement à des
- plaquettes avec biseau plan.

 2) La tolérance dépend de la grandeur de la plaquette. Indiquer la classe de tolérance correspondant aux valeurs données par les tableaux ci-dessous en fonction de la grandeur de la plaquette.

Forme de plaquette D


Cercle inscrit	Tolérance sur m	Tolérance sur d
6,35	±0,11	±0.05
9,525	±0,11	±0,05
12,70	±0,15	±0,08
15,875	±0,18	±0,10
19,5	±0,18	±0,10

t mm T1 02 t = 5,56 t = 6,35 t = 7,94 t = 1,98 t = 2,38 t = 3,18 05 06 07 t = 3.97t = 9,52

6 Epaisseur de plaquette,

7 Biseau pl	an, angle de	dépouille
Biseau plan		Rayon, mm
	α, [\sqrt{r}
A – 45° D – 60° E – 75°	A - 3° B - 5° C - 7°	00 - Vif 02 - 0,2
F - 85°	D - 15	04 - 0,4 08 - 0,8
P - 90° Z - Autres	E 20° F - 25°	12 - 1,2 16 - 1,6
	G - 30° N - 0°	20 - 2,0
	P - 11°	24 – 2,4 32 – 3,2
	Z - Autres	X - Autres

;D	06	09	11	16	22	27	33	44
:010				09	12	15	19	25
55° † 🕽			07	11	15	19	23	31
80° ;			06	09	12	16	19	25
iC	5/32"	7/32"	1/4"	3/8"	1/2"	5/8"	3/4"	1"

FRAISAGE: CONDITIONS DE COUPE

NUANCE			USINER pages 12 et 13)	DURETE BRINELL HB	0,1	ce (mm/ 0,2	0,4	
	(Classification of pages 12 of 10)				Vitesse/coupe (m/min)			
		01	C = 0,1 - 0,25 %	125	305	255	170	
		02	C = 0,25 - 0,55 %	150	275	225	155	
	Aciers non alliés	03	C = 0,55 - 0,80 %	170	260	215	145	
				210	225	185	125	
R				300	165	135	95	
		04	Non trempés	175	215	175	120	
RS	Aciers faiblement alliés (éléments d'alliage ≤5 %)	06	Trempés et revenus	275	155	125	85	
RS6	(**************************************	07	Trempés et revenus	350	125	100	65	
		08	Recuits	200	165	135	90	
RS7	Aciers fortement alliés (éléments d'alliage > 5%)	09	Aciers à outils au carbone	200	135	110	75	
	(**************************************	10	Aciers à outils au carbone	300	115	95	65	
		11	Non alliés	150	220	180	120	
	Aciers coulés	12	Faiblement alliés (éléments d'alliage ≤ 5 %)	200	175	145	95	
		13	Fortement alliés (éléments d'alliage > 5 %)	200	125	105	70	

NUANCE	MATIE	RES A	USINER	DURETE BRINELL	Avan 0,1	ce (mm/ 0,2	dent) 0,4
	(Classificati	(Classification cf. pages 12 et 13)					
		02	Non trempés	200	210	165	105
	Aciers inoxydables ferritique/martensitique	03	Trempés par précipitation	330	140	110	70
	· · · · · · · · · · · · · · · · · · ·	04	Trempés	330	155	125	80
	Aciers inoxydables	06	Non trempés	200	185	145	95
	austénitique	07	Trempés par précipitation	330	135	105	65
DV	Aciers inoxydables	09	Non soudable C ≥0,05 %	230	165	135	85
RX	austénitique/ferritique (duplex)	10	Soudable C <0,05 %	260	135	105	65
RX7	Aciers inoxydables	11	Non trempés	200	185	150	95
	coulés	12	Trempés par précipitation	330	120	95	65
	ferritique/martensitique	13	Trempés	330	145	115	75
	Aciers inoxydables coulés	14	Austénitique	200	175	140	90
	austénitique	15	Trempés par précipitation	330	125	95	65
	Aciers inoxydables coulés	17	Non soudable C ≥0,05 %	230	155	125	80
	austénitique/ferritique (duplex)	18	Soudable C <0,05 %	260	125	100	65

Les valeurs moyennes sont données à titre indicatif pour l'usinage avec arrosage et n'engagent nullement la responsabilité de notre société

FRAISAGE - CONDITIONS DE COUPE

NUANCE			USINER ages 12 et 13)	DURETE BRINELL HB	0,05	ce (mm/ 0,15	0,25
	Super alliages réfractaires	19	Recuits ou mis en solution	200	65	55	46
	Base fer	20	Vieillis ou mis en solution et vieillis	280	46	40	34
		21	Recuits ou mis en solution	250	60	50	44
RX	Super alliages réfractaires Base nickel	22	Vieillis ou mis en solution et vieillis	350	37	32	27
RX7		23	Coulés ou coulés et vieillis	320	45	39	34
		24	Recuits ou mis en solution	200	26	21	17
	Super alliages réfractaires Base cobalt	25	Mis en solution et vieillis	300	28	23	18
		26	Coulés ou coulés et vieillis	320	17	14	11

NUANCE	MATIER (Classification		USINER ages 12 et 13)	Rm* MPa	0,05	ce (mm/ 0,15	0,25
		27 Ti pur (99,5 % Ti)					
RX	Alliages de titane**	28	Alliages α, quasi α, α+β, recuits	950	65	55	50
		1050	55	48	42		
* I	Rm = résistance maximum à la traction i	e en MPa. ** Utiliser une géométrie de coupe p	ositive et trava	ailler sous	arrosage		

NUANCE	MATIEF (Classification		USINER ages 12 et 13)	DURETE BRINELL HB	0,1	ce (mm/ 0,2	0,3	
	Franks	01	Ferritique (copeaux courts)	130	255	205	170	
	Fonte malléable	02	Perlitique (copeaux longs)	230	205	170	140	
	E-uti	03	Faible résistance à la traction	180	215	175	115	
RF	Fonte grise	04	Forte résistance à la traction	245	170	135	95	
	Fonte nodulaire	05	Ferritique	160	135	105	75	
	Ponte nodulane	06	Perlitique	250	125	100	65	
	Aciers extras durs	09	Trempés et revenus	59HRC	55	47	36	
	Fonte en coquille	Fonte en coquille 10 Coulée, ou coulée et vieillie						

NUANCE	MATIER	RES A	USINER	DURETE BRINELL	Avan 0,1	0,15	dent) 0,2	
	(Classificatio	n cf. p	ages 12 et 13)	HB	Vitesse/coupe (m/min)			
	Alliages d'aluminium	11	Forgés ou forgés et travaillés à froid, non vieillissants	60	935	870	805	
	7 mages d arammam	12	Forgés ou forgés et vieillis	100	845	785	725	
	Alliages d'aluminium	13	Coulés et non vieillis	75	940	870	805	
	Amages d aiuminium	14	Coulés, ou coulés et vieillis	90	845	785	725	
K	Alliages d'aluminium	15	Coulés 13-15%-Si	130	375	350	325	
	Amages d addinimum	16	Coulés 16-22%-Si	130	285	265	245	
		17	Alliages de décolletage, Pb > 1%	110	470	435	405	
	Cuivre et alliages de cuivre	18	Laiton et bronze au plomb, Pb ≤ 1%	90	470	435	405	
		19	Bronze, cuivre sans plomb et cuivre électrolytique	100	325	305	285	

Les valeurs moyennes sont données à titre indicatif pour l'usinage avec arrosage et n'engagent nullement la responsabilité de notre société

PLAQUETTES A TROU TYPE A

ADKT		NU	JANC	ES			DIM	ENSIO	NS		Porte Outils
ADKI	R	RS	RX	RF	K	l	d	t	r	d1	Porte Outils
1505PDR 1505PDSR		•	•			15	9,53	5,56	0,8	4,5	TYPE ISCAR

ADIT		NU	JANC	ES			DIM	ENSIO	NS		Donto Ontila
ADLT	R	RS	RX	RF	K	l	d	t	r	d1	Porte Outils
150308 R		•				15	9,53	3,18	0,8	4,5	TYPE WALTER

ADIW		NU	JANC	ES			DIM	ENSIO	NS		Porte-outils
ADLW	R	RS	RX	RF	K	1	d	t	r	$\mathbf{d_1}$	Porte-outils
	503R1 503R1,5 503R2 503R2,5 503R3 503R3,5					15	9,52	3,18	1 1,5 2 2,5 3 3,5	4,5	1237-1601
15 15	503R4 503R4,5 503R5 503R6					15	9,52	3,18	4 4,5 5 6	4,5	1237-1603

ADMW			NU	JANC	ES			DIM	ENSIO	NS		Porte Outils
ADWIV		R	RS	RX	RF	K	1	d	t	r	d1	Forte Outils
	1503R1 1503R1,5 1503R2 1503R2,5	•					15	9,52	3,18	1 1,5 2 2,5	4,5	1235-1701
15°	1503R3 1503R3,5 1503R4 1503R4,5 1503R5	•					15	9,52	3,18	3 3,5 4 4,5 5	4,5	1235-1702

PLAQUETTES A TROU TYPE A

ADVT				NUA	NCES	5			DIM	ENSI	ONS		Dowto Outile
APKT		R	RS	RS6	RX	RF	K	l	d	t	r	d1	Porte Outils
	1003PDFR 1003PDSR		•	•	•		•	9,52	6,35	3,18	0,4	2,75	205W - 206W - 208M - 209M - 500W
35°	1604PDFR 1604PDSR		•	•	•		•	16,5	9,56	5,76	0,8	4,4	225C - 225W - 226M - 550M - 550W

ADVV			NUAI	NCES	\$			DIM	ENSI	ONS		Porte Outils
APKX	R	RS	RS6	RX	RF	K	1	d	t	r	d1	Porte Outils
1604PDFR						•	16,4	9,53	4,76	0,2	4,4	225C - 225W - 226M - 550M - 550W

ADEN (A DELITED)			NUA	NCES	5			DIM	ENSI	ONS		Porte Outils
APKX (AFFUTEE)	R	RS	RS6	RX	RF	K	l	d	t	r	d1	Porte Outils
1604 ALU						•	16,5	9,56	5,76	0,2	4,4	225C - 225W - 226M - 550M - 550W

ADMT (ADET)			NUA	NCES	,			DIM	ENSI	ONS		Donto Ontilo
APMT (APFT)	R	RS	RS6	RX	RF	K	l	d	t	r	d1	Porte Outils
1604PDSR		•					16,4	9,53	4,76	0,8	4,4	225C - 225W - 226M - 550M - 550W

PLAQUETTES A TROU TYPE B

BDGT		NU	JANC	EES			DIM	ENSIC	NS		Porte-
BDG1	RS	RS7	RX	RX7	K	1	d	t	r	\mathbf{d}_1	outils
11T302FR-JA 11T304FR-JA					•	11,0	6,7	3,8	0,2 0,4	2,8	K2911
170404FR-JA 170408FR-JA					•	17,0	9,6	4,9	0,4 0,8	4,4	K2917

BDMT			NU	JANC	EES			DIM	ENSIC	NS		Porte-
DDNII		RS	RS7	RX	RX7	K	i	d	t	r	$\mathbf{d_1}$	outils
	11T302ER-JT 11T304ER-JT 11T308ER-JT		••		•		11,0	6,7	3,8	0,2 0,4 0,8	2,8	K2911
10°)	170404ER-JT 170408ER-JT 170412ER-JT 170416ER-JT* 170420ER-JT*		•••••		•		17,0	9,6	4,9	0,4 0,8 1,2 1,6 2,0	4,4	K2917

^{*} Nécessite une retouche du corps de fraise

PLAQUETTES OCTOGONALES POSITIVES A TROU

OEVT		I	NUA	NCES	5			DIM	IENSI	ONS		Porte Outils
OFKT	R	RS	RS6	RX	RF	K	l	d	t	r	d1	Forte Outils
05T3SN		•	•				5,2	12,7	3,97	0,5	4,4	TYPE SECO ISCAR

PLAQUETTES RONDES POSITIVES A TROU

RCMT		NU	JANC	ES		DIM	ENSIO	NS		Porte Outils
KCMI	R	RS	RX	RF	K	d	t		d1	Forte Outils
0803MO	•					8	3,18		3,4	K272

RPMT				NU	JANC	ES		DI	MENSI	ONS		Donto Ontila
KPWII			R	RS	RX	RF	K	d	t		d1	Porte Outils
		120400		•				12,	4,76		5,2	5540.90
ч —	1 [t	1204MO	•					12	4,76		4,5	1549.90 5549

RPMW	•			NU	JANC	ES		DIM	ENSIC	NS		Porte Outils
AT IVI VV			R	RS	RX	RF	K	d	t		d1	1 of te Outils
	d1	0802MO	•					8	2,38		3,4	1520.90
		1003MO	•					10	3,18		4,5	1530.90 5530
- d -	1 [t	1204MO	•					12	4,76		4,5	1549.90 5549

WPR				NU	ANC	ES		DIM	ENSIC	NS	Porte Outils
WIA		1	R	RS	RX	RF	K	d	t		Forte Outils
	10	(•					10	2,5		
	12	(•					12	2,5		
	16	(•					16	3,0		85_0
	20	(•					20	3,0		83_0
"_ д	25	(_					25	4,0		
	32	(•					32	5,0		

 \bullet = Disponible / \bullet = Disponible usine / \bigcirc = Sur demande

PLAQUETTES CARREES POSITIVES A TROU

CDUT			NUA	NCES	5			DIM	ENSIO	NS		Porte
SDHT	R	RS	RS6	RX	RF	K	1	d	t	a	d1	Outils
1204AEFN 1204AESN		•				•	12,7	12,7	4,76	1,8	5,56	TYPE WALTER TIZIT

CDMT			NUA	NCES	}			DIM	ENSIO	NS		Porte
SDMT	R	RS	RS6	RX	RF	K	l	d	t	r	d1	Outils
090308 12T308	•	•					9,53 12,7	9,53 12,7	3,18 3,97	0,8	4,4 5,56	TYPE SANDVICK

CEUT			NUA	NCES	}			DIM	ENSIO	NS		Porte
SEHT	R	RS	RS6	RX	RF	K	l	d	t	a	d1	Outils
1204AFFN 1204AFSN		•	•	•		•	12,7	12,7	4,76	2,66	5,56	1748.90 1748.07

CEIIW								DIM	ENSIO	NS		Porte
SEHW	R	RS	RS6	RX	RF	K	1	d	t	a	d1	Outils
1204AFTN					0		12,7	12,7	4,76	2,66	5,56	1748.90 1748.07

CDMT			NUA	NCES	5			DIM	ENSIO	NS		Porte
SPMT	R	RS	RS6	RX	RF	K	l	d	t	r	d1	Outils
09T308 120408		•					9,53 12,7	9,53 12,7	3,97 4,76	0,8	4,4 5,6	TYPE WALTER

PLAQUETTES CARREES POSITIVES SANS TROU

CECD (CEVD	\			NUA	NCES				DIM	ENSIO	NS	Porte
SECR (SEKR))	R	RS	RS6	RX	RF	K	1	d	t	a	Outils
	1203AFSN		•		•			12,7	12,7	3,18	2,3	0748.90 0748.99
200	1204AFSN		•					12,7	12,7	4,76	2,3	
t	1504AFSN		0					15,88	15,88	4,76	2,3	0758.99

SECV			NUA	NCES				DIM	ENSIO	NS	Porte
SECX	R	RS	RS6	RX	RF	K	1	d	t	a	Outils
1203AFFR						•	12,7	12,7	3,18	2,6	0748.90 0748.99

CEUN (CECN	.)			NUA	NCES				DIM	ENSIO	NS	Porte
SEKN (SECN))	R	RS	RS6	RX	RF	K	1	d	t	a	Outils
	1203AFEN 1203AFSN 1203AFTN		•	•	•	0		12,7	12,7	3,18	2,3	0748.90 0748.99
20-	1204AFSN		•					12,7	12,7	4,76	2,3	
t l	1504AFSN 1504AFTN		0		0			15,88	15,88	4,76	2,4	0758.99

PLAQUETTES CARREES POSITIVES SANS TROU

CDVN				NUA	NCES	5			DIM	ENSIO	NS		Porte
SPKN		R	RS	RS6	RX	RF	K	1	d	t	a	b	Outils
b	1203EDTR 1203EDSR		•	•	•	0		12,7	12,7	3,18	1,4	1	0440.90 0440.99 0940.95 0940.96
	1204EDSR		•					12,7	12,7	4,76	1,4	1	
	1504EDSR		•					15,88	15,88	4,76	1,4	1	0450.99 0950.95

CDVD			NUA	NCES	5			DIM	ENSIO	NS	Porte
SPKR	R	RS	RS6	RX	RF	K	l	d	t	a	Outils
1203EDSR		•					12,7	12,7	3,18	1,4	0440.90 0440.99 0940.95 0940.96

CDIM				NUA	NCES	5			DIM	ENSIO	NS	Porte
SPUN		R	RS	RS6	RX	RF	K	l	d	t	r	Outils
	090308	•						9,53	9,53	3,18	0,8	0440.90 0940.95
	120308S		0					12,7	12,7	3,18	0,8	0930.95

PLAQUETTES CARREES NEGATIVES SANS TROU

SNUN		NU	JANC	ES			DIM	ENSIO	NS	Porte Outils
SIVUIV	R	RS	RX	RF	K	l	d	t	r	Porte Outils
120408 120412		0				12,7	12,7	4,76	0,8	0442.90 0442.99

PLAQUETTES TRIANGULAIRES POSITIVES SANS TROU

TDEN				NUA	NCES	5			Porte				
TPKN		R	RS	RS6	RX	RF	K	1	d	t	a	b	Outils
	1603PDSR 1603PDTR 1603PPTR		•	•	•			16,5	9,53	3,18	1,2	1	0130 0830.95
	2204PDSR 2204PDTR		•	•	•			22	12,7	4,76	1,4	1,1	0140.90 0140.99 0840.95

TPKR					NUA	NCES				Porte			
IFAK		R	RS	RS6	RX	RF	K	l	d	t	a	Outils	
60-		1603PPSR		•					16,5	9,53	3,18	1,2	0130
i d	11-	2204PDSR		•					22	12,7	4,76	1,4	0140.90 0140.99 0840.95

TPUN			NUA	NCES	3			Porte				
		RS	RS6	RX	RF	K	1	d	t	r		Outils
160308T		•					16,5	9,53	3,18	0,8		0130 0630.90 0640.90 0830.90 0830.95

PLAQUETTES TRIANGULAIRES NEGATIVES SANS TROU

TAILIAI	NUANCES						DIM	Porte Outils		
TNUN	R	RS	RX	RF	K	1	d	t	r	Forte Outils
160308	0					16,5	9,52	3,18	0,8	0132.30 0132.07 0132.90

PLAQUETTES RHOMBIQUES (80°) POSITIVES A TROU

CCGX			NU	JANC	ES			DIM	Porte Outils				
		R	RS	RX	RF	K	l	d	t	r	d1	1 or te Outils	
	d1 7	060222	•				•	6,5	6,32	2,38	0,6	2,8	
		09Т332	•				•	9,7	9,53	3,97	0,6	4,1	4009 4012
80°	ݰ t - T	120442	•				•	12,9	12,7	4,8	0,8	5,4	

PLAQUETTES A TROU TYPE L

LDHT		NU	JANC	ES			DIM	Porte Outils			
		RS	RX	RF	K	l	d	t	r	d1	Porte Outils
15T308SR		0				15	9,53	3,97	0,8	4	TYPE TIZIT

PLAQUETTES A TROU TYPE SN

SNHX			NU	JANC	EES		DIMENSIONS					Porte Outils
		R	RS	RX	RF	K	l	d	t			Forte Outils
	1102 XX	•					11.00	11,00	2,38			
	1103 XX	•					11,00	11,00	2,70			1942.90
	1203 XX	•							3,18			
	12045 XX	•					12.70	12,70	4,50			
	1205 XX	•					12,70	12,70	5,40			
	1207 XX								7,00			

